The automorphism group of a valued field of generalised formal power series
نویسندگان
چکیده
Let $ k be a field, G totally ordered abelian group and \mathbb K = k((G)) the maximal field of generalised power series, endowed with canonical valuation v $. We study \mathrm{-Aut} preserving automorphisms subfield k(G)\subseteq K\subseteq $, where k(G) is fraction ring k[G] Under assumption that satisfies two lifting properties we are able to generalise refine Hofberger's decomposition \mathrm{-Aut}\mathbb prove structure theorem decomposing v\mathrm{-Aut} into 4-factor semi-direct product notable subgroups. then identify large class Hahn fields satisfying aforementioned properties. Next focus on strongly additive give an explicit description internal in terms groups homomorphisms \mathrm{Hom}(G,k^\times) k^\times \mathrm{Hom}(G,1+I_K) 1-units Finally, specialise our results some relevant special cases. In particular, extend work Schilling Laurent series Deschamps Puiseux series.
منابع مشابه
a cross-comparative dtudy between two textbook series in terms of the presentation of politeness
چکیده ندارد.
15 صفحه اولanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)
We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)
We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2022
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2022.04.023